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Abstract 

This article presents a simple efficient and asynchronously correcting a posteriori error approximation for discontinuous finite 

element solutions of the second-order hyperbolic partial differential problems on triangular meshes. This study considersthe 

basis functions for error spaces corresponding to some finite element spaces. The discretization error of each triangle is 

estimated by solving the local error problem. It also shows global super convergence for discontinuous solution on triangular 

lattice. In this article, the triangular elements are classify into three types: (i) elements with one inflow and two outflow edges 

are of type I, (ii) elements with two inflows and one outflow edges are of type II and (iii) elements with one inflow edge, one 

outflow edge, and one edge parallel to the characteristics are of type III. The article investigated higher-dimension 

discontinuous Galerkin methods for hyperbolic problems on triangular meshes and also studied the effect of finite element 

spaces on the superconvergence properties of DG solutions on three types of triangular elements and it showed that the DG 

solution is O(h
p+2

) superconvergent at Legendre points on the outflow edge on triangles having one outflow edge using three 

polynomial spaces. A posteriori error estimates are tested on a number of linear and nonlinear problems to show their 

efficiency and accuracy under lattice refinement for smooth and discontinuous solutions. 
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1. Introduction 

The discontinuous Galerkin method was first applied to 

solve the neutron equation [11] after that it was planned for 

initial-value problems [6, 7, 10]. Cockburn and Shu [1, 12] 

prolonged the conservation law method to explain first-order 

hyperbolic partial differential equations. Super convergence 

properties for DG methods have been planned for ordinary 

differential equations [5, 7, 11], for hyperbolic problems [3, 

4, 6] and for diffusion and convection-diffusion problems [2, 

8, 9]. DG methods permit discontinuous bases, which simpli-

fy both h-refinement and p-refinement. The solution space 

consists of piecewise continuous polynomial functions rela-

tive to a structured or unstructured mesh. As such, it can 

sharply confinement solution discontinuities relative to the 

computational mesh. It upholds local conservation on an 

elemental basis. The DG method has a simple assertion pat-

tern between elements with a common face that makes it 

useful for parallel computation. Recently, Adjerid et al. [13, 

14] proved that DG solutions of one-dimensional linear and 

nonlinear hyperbolic problems using p-degree polynomial 

approximations exhibit an 𝑂(𝑕𝑝+2)super convergence rate at 
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the roots of Radau polynomial of degree 𝑝 +  1 on each el-

ement. They furtherproven a strong 𝑂(𝑕𝑝+2) superconver-

gence at the downwind end of every element. Krivodonova 

and Flaherty [6] assembled a posteriori error estimates that 

converge to the true error under mesh refinement on unstruc-

tured triangular meshes. Adjerid and Massey [2, 3] shownsu-

per convergence results for multi-dimensional problems us-

ing rectangular meshes where they showed that the top term 

in the true local error is spanned by two (𝑝 +  1) −degree 

Radau polynomials in the 𝑥  and 𝑦 directions, respectively. 

They further showed that a p-degree discontinuous finite 

element solution exhibits 𝑂(𝑕𝑝+2) ) superconvergence at 

Radau points obtained as a tensor product of the roots of 

Radau polynomial of degree 𝑝 +  1. In this paper, we extend 

the study of Flaherty and Krivodonova [6] to show new su-

per convergence results for DG solutions. The triangular el-

ements are classify into three types: (i) elements with one 

inflow and two outflow edges are of type I, (ii) elements with 

two inflows and one outflow edges are of type II and (iii) 

elements with one inflow edge, one outflow edge, and one 

edge parallel to the characteristics are of type III. This ar-

rangement will be defined more precisely later. The article 

presents several new 𝑂(𝑕𝑝+2)point wisesuper convergence 

results for the three types of elements and three polynomial 

spaces. In particular, it shows that the solution on elements 

of type I is 𝑂(𝑕𝑝+2)super convergent at the two vertices of 

the inflow edge using an appropriate space. Moreover, for 

some spaces superiorto the space of polynomials of degree p 

and smaller than the polynomial space of degree p + 1. It 

exposed additional super convergence points in the interior 

of each triangle. On elements of type II, the DG solution is 

𝑂(𝑕𝑝+2)super convergent at the Legendre points on the out-

flow edge as well as at interior problem-dependent points. 

On elements of type III, the DG solution is 𝑂(𝑕𝑝+2)super 

convergent at the Legendre points on the outflow edge and 

for some polynomial spaces the DG solution is 𝑂(𝑕𝑝+2)at 

every point of the outflow edge. This study will extant a su-

per convergence investigation of the local error. These super 

convergence results still hold on meshes consisting of ele-

ments of type III only. In order to hold these super conver-

gence rates for the global solution on general meshes one 

needs to use estimates of the boundary conditions at the in-

flow boundary of each element. This is possible on elements 

whose inflow edges are on the inflow boundary of the do-

main while on the remaining elements. It accurate the solu-

tion by adding an error estimate and use it as an inflow 

boundary condition. 

2. DG Formulation and Preliminary 

Results 

Consider a linear first order hyperbolic scalar problem on 

a bounded convex polygonal domain  𝛺 ∈ 𝑅2 . Let 𝛽 =

,𝛽1, 𝛽2-𝑇 denote a constant non zero velocity vector. If 𝑛de-

notes the outward unit normal vector, the domain boundary 

𝜕𝛺 = 𝜕𝛺+ ∪ 𝜕𝛺− ∪ 𝜕𝛺0, where 

𝜕𝛺− = *(𝑥, 𝑦) ∈ 𝛽. 𝑛 < 0+, is the inflow boundary. 

𝜕𝛺+ = *(𝑥, 𝑦) ∈ 𝛽. 𝑛 > 0+, is the outflow boundary. 

𝜕𝛺0 = *(𝑥, 𝑦) ∈ 𝛽. 𝑛 = 0+, is the characteristic boundary. 

Let 𝑢(𝑥, 𝑦) denote a smooth function on 𝛺  and consider 

the following hyperbolic boundary value problem 

𝛽. ∇𝑢 + 𝑏𝑢 = 𝑓(𝑥, 𝑦), (𝑥, 𝑦) ∈ 𝛺 = ,0,1- × ,0,1-  (1) 

Subject to the boundary conditions 

𝑢(𝑥, 0) = 𝑔0(𝑥), 𝑢(0, 𝑦) = 𝑔1(𝑥) 

Where the function 𝑓(𝑥, 𝑦), 𝑔0(𝑥), and 𝑔1(𝑥) are selected 

such that the exact solution 𝑢(𝑥, 𝑦) ∈ 𝐶∞(𝛺).  Let 𝑏, 𝛽1 ≥

0, 𝛽2 ≥ 0, 𝛽1
2 + 𝛽2

2 ≥ 0, be real constants. 

The domain 𝛺 is partitioned into a regular mesh having 𝑁 

triangular elements ∆𝑗 , 𝑗 = 1 … … 𝑁 of diameter 𝑕 > 0. In the 

remainder of this study, it omit the element index and refer to 

an arbitrary element by ∆ whenever confusion is unlikely. 

Multiply (1) by a test function𝑣, integrate over an arbitrary 

element ∆, 

∬ (𝛽. ∇𝑢 + 𝑏𝑢)
∆

𝑣 𝑑𝑥 𝑑𝑦 = ∬ 𝑓𝑣 𝑑𝑥 𝑑𝑦
∆

  

Apply Green’s theorem to write 

∫ (𝛽. 𝑛)𝑢𝑣𝑑𝑠
𝛤−

+ ∫ (𝛽. 𝑛)𝑢𝑣𝑑𝑠
𝛤+

+ ∬ (−𝛽. ∇𝑢 +
∆

𝑏𝑢) 𝑣 𝑑𝑥 𝑑𝑦 = ∬ 𝑓𝑣 𝑑𝑥 𝑑𝑦
∆

              (2) 

Where 𝛤+ and 𝛤− denote the outflow boundary and inflow 

boundary, respectively, of ∆. Next we approximate 𝑢(𝑥, 𝑦) 

by a piecewise polynomial function 𝑈(𝑥, 𝑦)  whose re-

striction to ∆ is in 𝑃𝑝  consisting of complete polynomial of 

degree 𝑝 

𝑃𝑘 = *𝑞|𝑞 = ∑𝑘
𝑚=0 ∑ 𝑐𝑖

𝑚𝑥𝑖𝑦𝑖𝑚
𝑖=0 +, 𝑘 = 0,1, … … . . , 𝑝 (3) 

Here 𝑈(𝑥, 𝑦)  is a piecewise polynomial not necessarily 

continuous across inter-element boundaries. 

In our error analysis we will also use the following spaces 

𝑉𝑘 = 𝑃𝑘 ∪ *𝑥𝑖𝑦𝑘+1−𝑖 , 𝑖 = 1,2, … … . , 𝑘+, 𝑘 = 0,1, … … , 𝑝 (4) 

𝑈𝑘 = 𝑃𝑘 ∪ *𝑥𝑘+1𝑦𝑘+1, +, 𝑘 = 0,1, … … , 𝑝       (5) 

And 

𝑃𝑘 = {𝑞|𝑞 = ∑ 𝑐𝑖𝑥
𝑖𝑘

𝑖=0 }, 𝑘 = 0,1, … … , 𝑝        (6) 

Note that𝑉0 = 𝑃0, 𝑈0 = 𝑃1and 

𝑃𝑘+1 ⊂ 𝑉𝑝 ∪ 𝑠𝑝𝑎𝑛*𝑥𝑝+1, 𝑦𝑝+1+, 𝑝 ≥ 1       (7) 
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These spaces have the following dimensions dim(𝑃𝑝) =

(𝑝 + 1)(𝑝 + 2)/2,  dim (𝑉𝑝) =
(𝑝+2)(𝑝+3)

2
− 2,  and 

dim(𝑈𝑝) =
(𝑝+1)(𝑝+2)

2
+ 2. 

Let 𝑆𝑁,𝑝 denote the space of piecewise polynomial func-

tions 𝑈 such that the restriction of 𝑈 to an element ∆ is in 𝑊𝑝 

which denotes  𝑃𝑝 , 𝑉𝑝 ,  or 𝑈𝑝 . The discrete DG formulation 

consists of determining 𝑈 ∈ 𝑆𝑁,𝑝such that 

∫ (𝛽. 𝑛)𝑈−𝑉𝑑𝑠
𝛤−

+ ∫ (𝛽. 𝑛)𝑈𝑉𝑑𝑠
𝛤+

+ ∬ (−𝛽. ∇𝑉 +
∆

𝑏𝑉) 𝑈 𝑑𝑥 𝑑𝑦 = ∬ 𝑓𝑉 𝑑𝑥 𝑑𝑦
∆

, ∀𝑉 ∈ 𝑊𝑝            (8) 

Where𝑈− is the limit from the inflow element sharing 𝛤−, 

i.e., if (𝑥, 𝑦) ∈ 𝛤−, then 

𝑈−(𝑥, 𝑦) = lim𝑠→0+ 𝑈−((𝑥, 𝑦) + 𝑠𝑛)  

Next, consider the problem (8) on an element ∆ such that 

𝛤− ⊂ 𝜕𝛺−. Let 𝑈− be an approximation of the true solution 

𝑢on 𝛤−  and subtract (8) from (2) with 𝑣 = 𝑉 to obtain the 

DG orthogonality condition for the local error 𝜖 = 𝑢 − 𝑈 

∫ (𝛽. 𝑛)𝜖−𝑉𝑑𝑠
𝛤−

+ ∫ (𝛽. 𝑛)𝜖𝑉𝑑𝑠
𝛤+

+ ∬ (−𝛽. ∇𝑉 +
∆

𝑏𝑉) 𝜖 𝑑𝑥 𝑑𝑦 = 0, ∀𝑉 ∈ 𝑊𝑝       (9) 

The map of a physical triangle ∆  having vertices 

(𝑥𝑖 , 𝑦𝑖), 𝑖 = 1,2,3 into the canonical triangle (0,0), (1,0) and 

(0,1) by the standard affine mapping 

(
𝑥(𝜁, 𝜌)
𝑦(𝜁, 𝜌)

) = .
𝑥2 − 𝑥1 𝑥3 − 𝑥1

𝑦2 − 𝑦1 𝑦3 − 𝑦1
/ (

𝜁
𝜌

) + .
𝑥1

𝑦1
/     (10) 

For simplicity, consider the DG orthogonality on the right 

angle with vertices (0,0), (𝑕, 0)  and (0, 𝑕)  which applying 

the affine mapping (3.10) with 𝜖(𝜁, 𝜌) and 𝑉(𝜁, 𝜌) leads to 

∫ (𝛽. 𝑛)𝜖−𝑉𝑑𝑠
𝛤−

+ ∫ (𝛽. 𝑛)𝜖𝑉𝑑𝑠
𝛤+

+ ∬ (−𝛽. ∇𝑉 +
∆

𝑕𝑏𝑉) 𝜖 𝑑𝜁 𝑑𝜌 = 0, ∀𝑉 ∈ 𝑊𝑝        (11) 

 
Figure 1. Three types of element. 

The triangular elements are classify into three types: (i) el-

ements with one inflow and two outflow edges are of type I, 

(ii) elements with two inflows and one outflow edges are of 

type II and (iii) elements with one inflow edge, one outflow 

edge, and one edge parallel to the characteristics are of type 

III 

In the analysis, it will use orthogonal polynomials given 

on the canonical triangle defined by the vertices (0,0), (1,0) 

and (0,1) as 

𝜑𝑘
𝑙 (𝜁, 𝜌) = 2𝑘𝐿̂𝑘 .

2𝜁

1−𝜌
− 1/ (1 − 𝜌)𝑘𝑃̂𝑙

2𝑘+1,0(2𝜌 − 1), 𝑘, 𝑙 ≥

0   (12) 

Where 𝑃̂𝑛
𝛽1,𝛽2(𝑥), −1 ≤ 𝑥 ≤ 1, is the Jacobi Polynomial. 

𝑃̂𝑛
𝛽1,𝛽2(𝑥) =

(−1)𝑛

2𝑛𝑛!
(1 − 𝑥)−𝛽1(1 + 𝑥)−𝛽2

𝑑𝑛

𝑑𝑥𝑛 [(1 −

𝑥)𝛽1+𝑛(1 + 𝑥)𝛽2+𝑛], 𝛽1, 𝛽2 > −1.      (13) 

And 𝐿̂𝑛(𝑥) = 𝑃̂𝑛
0,0(𝑥) ∈ 𝑃𝑛 , −1 ≤ 𝑥 ≤ 1, is the legendre 

polynomial. 

(𝜑𝑘
𝑙 , 𝜑𝑝

𝑞
) = ∫ ∫ 𝜑𝑘

𝑙 𝜑𝑝
𝑞1−𝜌

0

1

0
𝑑𝜁𝑑𝜌 = 𝑏𝑘𝑝

𝑙𝑞
𝛿𝑘𝑝𝛿𝑙𝑞    (14) 

And is complete in the space 𝑃𝑝. In our analysis we also 

need the Radua polynomials 

𝑅̂𝑝+1(𝑥) = (1 − 𝑥)𝑃̂𝑝
1,0(𝑥) = 𝐶 .𝐿̂𝑝+1(𝑥) − 𝐿̂𝑝(𝑥)/ (15) 

The (𝑘 + 1)-degree polynomials 

𝜓𝑘
𝑙 (𝜁, 𝜌) = 𝑃̂𝑘

1,0 .
2𝜁

1−𝜌
− 1/ (1 − 𝜌)𝑘𝑃̂𝑙

2𝑘+2,0(2𝜌 − 1), 𝑘, 𝑙 ≥

0, 𝑘 + 𝑙 ≤ 𝑝      (16) 

Satisfy the orthogonality condition 

(𝜓𝑘
𝑙 , 𝜓𝑝

𝑞
) = ∫ ∫ (𝜁 − (1 − 𝜌))𝜓𝑘

𝑙 𝜓𝑝
𝑞1−𝜌

0

1

0
𝑑𝜁𝑑𝜌 = 𝑏𝑘𝑝

𝑙𝑞
𝛿𝑘𝑝𝛿𝑙𝑞 (17) 

And thus provide a basis for 𝑃𝑝. 

Drop the hat and let 𝐿̂𝑝, 𝑃̂𝑛
𝛽1,𝛽2  and 𝑅̂𝑝 denote the shifted 

Jacobi, Legendre and Radua polynomials, respectively, on 

[0,1] 

The finite element spaces 𝑉𝑝  and 𝑈𝑝  are suboptimal, i.e., 

they contain 𝑝 + 1-degree terms that do not contribute to 

global convergence rate, however, they yield 𝑂(𝑕𝑝+2) super-

convergence rates at some additional interior points which 
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simplifies the a posteriori error estimation procedures de-

scribed in [13] 

If the exact solution is an analytic function, then the local 

error can be written as a Maclaurin series 

𝜖(𝜁, 𝜌) = ∑ 𝑄𝑘(𝜁, 𝜌)𝑕𝑘∞
𝑘=0 , )                (18) 

Where 𝑄𝑘 ∈ 𝑃𝑘 

Lemma 1: If 𝑄𝑘 ∈ 𝑃𝑘 , 𝑘 = 0, … … , 𝑝 satisfies 

∫ (𝛽. 𝑛)𝑄0𝑉𝑑𝑠
𝛤+

+ ∬ (−𝛽. ∇𝑉)
∆

𝑄0 𝑑𝜁 𝑑𝜌 = 0 ∀𝑉 ∈ 𝑊𝑝(19) 

And for 1 ≤ 𝑘 ≤ 𝑝, 

∫ (𝛽. 𝑛)𝑄𝑘𝑉𝑑𝑠
𝛤+

+ ∬ (−𝛽. ∇𝑉𝑄𝑘 + 𝑏𝑉𝑄𝑘−1)
∆

𝑑𝜁 𝑑𝜌 =

0, ∀𝑉 ∈ 𝑊𝑝          (20) 

Then, 

𝑄𝑘 = 0, 0 ≤ 𝑘 ≤ 𝑝                     (21) 

Furthermore, Let 𝑢 ∈ 𝐶∞(∆) and 𝑈 ∈ 𝑈𝑝(∆) be the solu-

tion of (1) and (8), respectively, with 𝑈−|𝛤−
= 𝑢. If 𝛽1, 𝛽2 ≥

0 such that ∆ is either a triangle, then the local finite error 

can be written as 

𝜖(𝜁, 𝜌) = ∑ 𝑕𝑘∞
𝑘=𝑝+1 𝑄𝑘(𝜁, 𝜌)            (22) 

Where 

∬ 𝑄𝑝+1𝑉
∆

𝑑𝜁 𝑑𝜌 = 0 ∀𝑉 ∈ 𝑃𝑝−1  

∫ (𝛽. 𝑛)𝑄𝑝+1𝑉𝑑𝑠
𝛤+

= 0, ∀𝑉 ∈ 𝑃𝑝  

∫ (𝛽. 𝑛)𝑄𝑘𝑑𝑠
𝛤+

= 0, 𝑘 ≥ 𝑝 + 1  

𝑄𝑝+1(𝜁, 𝜌) = ∑ 𝑏𝑖
𝑝𝑝

𝑖=0 𝜑𝑝−𝑖
𝑖 (𝜁, 𝜌) + ∑ 𝑏𝑖

𝑝+1
𝜑𝑝+1−𝑖

𝑖 (𝜁, 𝜌)𝑝+1
𝑖=0  (23) 

Furthermore, at the outflow boundary of the physical ele-

ment ∆ the local error satisfies 

∫ (𝛽. 𝑛)𝜖𝑑𝑠
𝛤+

= 𝑂(𝑕𝑝+2)                   (24) 

Local error 

Now, the first new results for the local error using space 𝑃𝑝 

in element ∆ can be stated as: 

Theorem 1: 

Under the same assumption as in 

𝜖(𝜁, 𝜌) = ∑ 𝑕𝑘∞
𝑘=𝑝+1 𝑄𝑘(𝜁, 𝜌)  there exist two constants 𝐶1 

and 𝐶2 such that on the outflow edge 

𝑄𝑝+1(1 − 𝜌, 𝜌) = 𝐶1𝐿𝑝+1(𝜌)            (25) 

𝑄𝑝+1(𝜁, 1 − 𝜁) = 𝐶2𝐿𝑝+1(𝜁)           (26) 

Furthermore, 

∬
𝜕𝑄𝑝+1

𝜕𝜁∆
𝜁𝑖𝜌𝑗𝑑𝜁𝑑𝜌 = 0, 𝑖 = 1, … . . 𝑝, 𝑗 = 0, … … . , 𝑝 −

1, 𝑖 + 𝑗 ≤ 𝑝           (27) 

∬
𝜕𝑄𝑝+1

𝜕𝜌∆
𝜁𝑖𝜌𝑗𝑑𝜁𝑑𝜌 = 0, 𝑖 = 0, … . . 𝑝 − 1, 𝑗 =

1, … … . , 𝑝, 𝑖 + 𝑗 ≤ 𝑝)           (28) 

∬ 𝛽. ∇(1 − 𝜁 − 𝜌)𝑖
∆

𝑄𝑝+1𝑑𝜁𝑑𝜌 = 0, 𝑖 = 1, … . . , 𝑝  (29) 

Proof: First note that (25) is a direct consequence of 

∫ (𝛽. 𝑛)𝑄𝑝+1𝑉𝑑𝑠
𝛤+

= 0, ∀𝑉 ∈ 𝑃𝑝  

In order to prove (27),  

𝐼 =  ∬
𝜕𝑄𝑝+1(𝜁,𝜌)

𝜕𝜁∆
𝜁𝑖𝜌𝑗𝑑𝜁𝑑𝜌 =

∫ 𝜁𝑖1

0
.∫

𝜕𝑄𝑝+1(𝜁,𝜌)

𝜕𝜁
𝜌𝑗𝑑

1−𝜁

0
𝜌/ 𝑑𝜁       (30) 

Differentiating the auxiliary polynomial 

𝑞(𝜁) = ∫ 𝑄𝑝+1(𝜁, 𝜌)
1−𝜁

0
𝜌𝑗𝑑𝜌,  

Leads to 

𝑞′(𝜁) =

−(1 − 𝜁)𝑗𝑄𝑝+1(𝜁, 1 − 𝜁)𝑑𝜁 + ∫
𝜕𝑄𝑝+1(𝜁,𝜌)

𝜕𝜁
𝜌𝑗𝑑

1−𝜁

0
𝜌.   (31) 

Combining this with (30) yields 

𝐼 = ∫ 𝜁𝑖(1 − 𝜁)𝑗𝑄𝑝+1(𝜁, 1 − 𝜁)𝑑𝜁
1

0
+ ∫ 𝜁𝑖1

0
𝑞′(𝜁)1𝑑𝜁) (32) 

The orthogonally condition for 𝑖 + 𝑗 ≤ 𝑝  infers that the 

first term in the right side of (32) is zero. Now, integrate the 

second term in (32) by parts and use 𝑞(𝜁) to write 

𝐼 =

𝜁𝑖 ∫ 𝑄𝑝+1(𝜁, 𝜌)𝜌𝑗𝑑𝜌
1

0
|

𝜁=0

𝜁=1

−

𝑖 ∫ ∫ 𝜁𝑖−1𝜌𝑗𝑄𝑝+1(𝜁, 𝜌)
1−𝜁

0

1

0
𝑑𝜁𝑑𝜌.     (33) 

For 𝑖 + 𝑗 ≤ 𝑝 and 𝑖 > 0,  apply the orthogonally condition 

∬ 𝑄𝑝+1𝑉
∆

𝑑𝜁 𝑑𝜌 = 0 ∀𝑉 ∈ 𝑃𝑝−1  

To establish (27). The proof of (28) follows the same line 

reasoning. 

Now, substitute the maclaurin series of the local error in 
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the DGM orthogonally condition on the canonical element 

(11) with 𝑊𝑝 = 𝑃𝑝 and follow the reasoning of the 𝑂(𝑕𝑝+1) 

term to write 

∫ (𝛽. 𝑛)𝑄𝑝+1𝑉𝑑𝑠
𝛤+

+ ∬ (−𝛽. ∇𝑉)
∆

𝑄𝑝+1 𝑑𝜁 𝑑𝜌 = 0 ∀𝑉 ∈

𝑃𝑝.         (34) 

Since on the canonical element the outflow edge is the 

segment 𝜌 = 1 − 𝜁, 0 ≤ 𝜁 ≤ 1 becomes 

∫ (𝛽. 𝑛)𝑄𝑝+1(1 − 𝜌, 𝜌)𝑉(1 − 𝜌, 𝜌)𝑑𝑠
1

0
−

∬ (𝛽. ∇𝑉)
∆

𝑄𝑝+1 𝑑𝜁 𝑑𝜌 = 0, ∀𝑉 ∈ 𝑃𝑝.      (35) 

Testing against 𝑉 = (1 − 𝜁 − 𝜌)𝑖 , 1 ≤ 𝑖 ≤ 𝑝  the first in 

(35) is zero which establishes (29). 

Equation (25) infers that the local error is 𝑂(𝑕𝑝+2)super-

convergent at the roots of Legendre polynomial on the out-

flow edge. 

The following theorem state and prove the same results as 

for 𝑈− = 𝜋𝑢, an interpolant of the exact boundary condition 

at the roots of 𝑝 + 1 degree Legendre on the inflow edges. 

Theorem 2: Under the same assumptions as in 𝑈−|𝛤−
=

𝜋𝑔  on each inflow boundary edge the properties (22) and 

(25-29) still hold. 

Proof: Since the inflow term in the orthogonally condition 

(11) is not zero in general, substituting the series (22) in the 

DG orthogonally condition (11), using 

𝑤(𝑥(𝜁)) − 𝜋𝑤(𝑥(𝜁)) = ∑ 𝑄𝑘
−∞

𝑘=𝑝+131 (𝜁)𝑕𝑘  

And collecting terms having the same power of h we ob-

tain (11) 

∑ 𝑕𝑘 .∫ (𝛽. 𝑛)𝑄𝑘
−𝑉𝑑𝑠

𝛤−
+ ∫ (𝛽. 𝑛)𝑄𝑘𝑉𝑑𝑠

𝛤+
+∞

𝑘=𝑝+1

∬ (−𝛽. ∇𝑉𝑄𝑘 + 𝑏𝑉𝑄𝑘−1)
∆

𝑑𝜁 𝑑𝜌/ = 0, ∀𝑉 ∈

𝑃𝑝………………(36) 

A direct application reveals that 𝑄𝑝+1
−  satisfies 

∫ (𝛽. 𝑛)𝑄𝑝+1
− 𝑉𝑑𝑠

𝛤−
= 0, ∀𝑉 ∈ 𝑃𝑝  

Thus, the 𝑂(𝑕𝑝+1) term yields 

∫ (𝛽. 𝑛)𝑄𝑝+1𝑉𝑑𝑠
𝛤+

+ ∬ (−𝛽. ∇𝑉𝑄𝑝+1)
∆

𝑑𝜁 𝑑𝜌 = 0, ∀𝑉 ∈

𝑃𝑝. …………..(37) 

From this point on the proof is the same as for theorem 1. 

Next, consider elements type II and III using the spaces 𝑈𝑝. 

Nothing that 𝑃𝑝 ⊂ 𝑈𝑝  and 𝑃𝑝 ⊂ 𝑉𝑝 , for 𝑝 ≥ 1 , apply the 

same proof to establish the result of 𝑈𝑝 and 𝑉𝑝. However, the 

DG error in the larger spaces 𝑈𝑝  and 𝑉𝑝  satisfies additional 

orthogonality conditions on elements of type II and III as 

stated in the next theorem. 

Theorem 3: Let 𝑝 ≥ 1  and ∆= *(𝜁, 𝜌), 𝜁, 𝜌 ≥ 0, 𝜁 + 𝜌 ≤

1+. Let 𝑢 ∈ 𝐶∞(∆) and 𝑈 ∈ 𝑈𝑝(∆) be the solution of (1) and 

(8) respectively with 𝑈−|𝛤−
= 𝑢. If 𝛽1, 𝛽2 ≥ 0 such that ∆ is 

either of type II and III, then the local finite element error 

can be written as in (25) where the leading term 𝑄𝑝+1, satis-

fies the following conditions 

∫ 𝛽2
1

0
𝑄𝑝+1(𝜁, 1 − 𝜁)𝜁𝑝+1𝑑𝜁 +

∫ ∫ 𝛽1
1−𝜁

0

1

0
𝜁𝑝+1 𝜕𝑄𝑝+1(𝜁,𝜌)

𝜕𝜁
𝑑𝜁𝑑𝜌 = 0,            (38) 

And 

∫ 𝛽1
1

0
𝑄𝑝+1(1 − 𝜌, 𝜌)𝜌𝑝+1𝑑𝜌 +

∫ ∫ 𝛽2
1−𝜌

0

1

0
𝜌𝑝+1 𝜕𝑄𝑝+1(𝜁,𝜌)

𝜕𝜌
𝑑𝜁𝑑𝜌 = 0,                (39) 

If either 𝛽1 = 0, 𝛽2 > 0 𝑜𝑟 𝛽1 > 0, 𝛽2 = 0, i.e.,∆ is of type 

III, then the leading term of the local error is zero on the out-

flow edge 

𝑄𝑝+1(1 − 𝜌, 𝜌) = 0, 0 ≤ 𝜌 ≤ 1  

Furthermore, if 𝛽1 > 0, 𝛽2 = 0, then 

∫ ∫ 𝜁𝑘𝑄𝑝+1(𝜁, 𝜌)𝑑𝜁𝑑𝜌
1−𝜁

0

1

0
= 0, 0 ≤ 𝑘 ≤ 𝑝  

∫
𝜕𝑘𝑄𝑝+1(𝜁,𝜌)

𝜕𝜁𝑘 𝑑𝜌
1−𝜁

0
= 0, 𝑘 = 0,1, 0 ≤ 𝜁 ≤ 1  

∬ 𝜁𝑝+1 𝜕𝑄𝑝+1(𝜁,𝜌)

𝜕𝜁
𝑑𝜁𝑑𝜌

∆
= 0  

Similarly, if 𝛽2 > 0, 𝛽1 = 0, then 

∫ ∫ 𝜌𝑘𝑄𝑝+1(𝜁, 𝜌)𝑑𝜁𝑑𝜌
1−𝜁

0

1

0
= 0, 0 ≤ 𝑘 ≤ 𝑝  

∫
𝜕𝑘𝑄𝑝+1(𝜁,𝜌)

𝜕𝜌𝑘 𝑑𝜌
1−𝜌

0
= 0, 𝑘 = 0,1, 0 ≤ 𝜁 ≤ 1  

And 

∬ 𝜌𝑝+1 𝜕𝑄𝑝+1(𝜁,𝜌)

𝜕𝜌
𝑑𝜁𝑑𝜌

∆
= 0  

Proof: Inserting the Maclaurin series for the local error (22) 

in this DGM orthogonally condition (35) with 𝑈−|𝛤−
= 𝑢 

and 𝑊𝑝 = 𝑈𝑝 the 𝑂(𝑕𝑝+2)term leads to (34) for all 𝑉 ∈ 𝑈𝑝. 

Testing against 𝑉 = 𝜁𝑝+1 we obtain 

∫ (𝛽1 + 𝛽2)
1

0
𝑄𝑝+1(𝜁, 1 − 𝜁)𝜁𝑝+1𝑑𝜁 +

∬ (−𝛽. ∇𝑉𝑄𝑝+1)𝜁𝑝+1
∆

𝑑𝜁 𝑑𝜌 = 0,       (40) 
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Which in turn, can be written as 

∫ (𝛽1 + 𝛽2)
1

0
𝑄𝑝+1(𝜁, 1 − 𝜁)𝜁𝑝+1𝑑𝜁 − ∫ 0(𝛽1(𝑝 +

1

0

1)𝜁𝑝) ∫ 𝑄𝑝+1(𝜁, 𝜌)𝑑𝜌
1−𝜁

0
1 𝑑𝜁 = 0       (41) 

Consider the polynomials 

𝑞(𝜁) = ∫ 𝑄𝑝+1(𝜁, 𝜌)
1−𝜁

0
𝑑𝜌,  

Leads to 

𝑞′(𝜁) = −𝑄𝑝+1(𝜁, 1 − 𝜁) + ∫
𝜕𝑄𝑝+1(𝜁,𝜌)

𝜕𝜁
𝑑

1−𝜁

0
𝜌, 0 ≤ 𝜁 ≤ 1 (42) 

Now, integrate the second term in (41) by parts and using 

(42) leads to 

∫ (𝛽1 + 𝛽2)
1

0
𝑄𝑝+1(𝜁, 1 − 𝜁)𝜁𝑝+1𝑑𝜁 −

𝛽1𝜁𝑝+1 ∫ 𝑄𝑝+1(𝜁, 𝜌)𝑑𝜌
1−𝜁

0
|

𝜁=0

𝜁=1

+ ∫ 𝛽1𝜁𝑝+1 .−𝑄𝑝+1(𝜁, 1 −
1

0

𝜁) + ∫
𝜕𝑄𝑝+1(𝜁,𝜌)

𝜕𝜁
𝑑

1−𝜁

0
𝜌/ 𝑑𝜁 = 0.       (43) 

Using 𝑞(1) = 0, it can be obtained 

∫ (𝛽1 + 𝛽2)
1

0
𝑄𝑝+1(𝜁, 1 − 𝜁)𝜁𝑝+1𝑑𝜁 −

∫ 𝛽1𝜁𝑝+1 .𝑄𝑝+1(𝜁, 1 − 𝜁)/ 𝑑𝜁
1

0
  

+ ∫ 𝛽1𝜁𝑝+1 ∫
𝜕𝑄𝑝+1(𝜁,𝜌)

𝜕𝜁
𝑑

1−𝜁

0
𝜌𝑑𝜁

1

0
= 0.     (44) 

Now (44) simplifies to 

∫ 𝛽2
1

0
𝑄𝑝+1(𝜁, 1 − 𝜁)𝜁𝑝+1𝑑𝜁 +

∫ 𝛽1𝜁𝑝+1 ∫
𝜕𝑄𝑝+1(𝜁,𝜌)

𝜕𝜁
𝑑

1−𝜁

0
𝜌𝑑𝜁

1

0
= 0.   

This establishes (38). 

In order to prove (39) we set 𝑉 = 𝜌𝑝+1 in (35) to obtain 

∫ (𝛽1 + 𝛽2)
1

0
𝑄𝑝+1(𝜌, 1 − 𝜌)𝜌𝑝+1𝑑𝜁 +

∬ (−𝛽. ∇𝑉𝑄𝑝+1)𝜌𝑝+1
∆

𝑑𝜁 𝑑𝜌 = 0,       (45) 

This in turn, can be written as 

∫ (𝛽1 + 𝛽2)
1

0
𝑄𝑝+1(1 − 𝜌, 𝜌)𝜌𝑝+1𝑑𝜌 − ∫ 0(𝛽2(𝑝 +

1

0

1)𝜌𝑝) ∫ 𝑄𝑝+1(𝜁, 𝜌)𝑑𝜁
1−𝜌

0
1 𝑑𝜌 = 0        (46) 

Consider the polynomials 

𝑞(𝜌) = ∫ 𝑄𝑝+1(𝜁, 𝜌)
1−𝜌

0
𝑑𝜁,  

And 

𝑞′(𝜌) = −𝑄𝑝+1(1 − 𝜌, 𝜌) + ∫
𝜕𝑄𝑝+1(𝜁,𝜌)

𝜕𝜌
𝑑

1−𝜌

0
𝜁, 0 ≤ 𝜌 ≤ 1 (47) 

Integrate the second term in (46) by parts and using (47) 

leads to 

∫ (𝛽1 + 𝛽2)
1

0
𝑄𝑝+1(1 − 𝜌, 𝜌)𝜌𝑝+1𝑑𝜌 −

𝛽2𝜌𝑝+1 ∫ 𝑄𝑝+1(𝜁, 𝜌)𝑑𝜁
1−𝜌

0
|
𝜌=0

𝜌=1

 + ∫ 𝛽2𝜌𝑝+1 .−𝑄𝑝+1(1 −
1

0

𝜌, 𝜌) + ∫
𝜕𝑄𝑝+1(𝜁,𝜌)

𝜕𝜌
𝑑

1−𝜌

0
𝜁/ 𝑑𝜌 = 0.    (48) 

Using 𝑞(1) = 0 

∫ (𝛽1 + 𝛽2)
1

0
𝑄𝑝+1(1 − 𝜌, 𝜌)𝜌𝑝+1𝑑𝜌 − ∫ 𝛽2𝜌𝑝+1 .𝑄𝑝+1(1 −

1

0

𝜌, 𝜌)/ 𝑑𝜌  + ∫ 𝛽2𝜌𝑝+1 ∫
𝜕𝑄𝑝+1(𝜁,𝜌)

𝜕𝜌
𝑑

1−𝜌

0
𝜌𝑑𝜁

1

0
= 0    (49) 

Now (44) simplifies to 

∫ 𝛽1
1

0
𝑄𝑝+1(1 − 𝜌, 𝜌)𝜌𝑝+1𝑑𝜌 +

∫ 𝛽2𝜌𝑝+1 ∫
𝜕𝑄𝑝+1(𝜁,𝜌)

𝜕𝜌
𝑑

1−𝜌

0
𝜁𝑑𝜌

1

0
= 0.  

Which establishes (39). 

Continue the proof by considering (37) with 𝛽 = ,𝛽1, 0-𝑡 

leading to 

∫ 𝑄𝑝+1(1 − 𝜌, 𝜌)
1

0
𝑉𝑑𝜌 + ∫ ∫

𝜕𝑉

𝜕𝜁

1−𝜁

0
𝑄𝑝+1𝑑𝜁𝑑𝜌

1

0
= 0, ∀𝑉 ∈

𝑈𝑝.      (50) 

Testing against 𝑉 = 𝜌𝑖, 0 ≤ 𝑖 ≤ 𝑝 + 1, obtain the orthog-

onality condition on the outflow edge 

∫ 𝑄𝑝+1(1 − 𝜌, 𝜌)
1

0

𝜌𝑖𝑑𝜌 = 0, 0 ≤ 𝑖 ≤ 𝑝 + 1 

Since 𝑄𝑝+1(1 − 𝜌, 𝜌) ∈ 𝑃𝑝+1, it can be established 

𝑄𝑝+1(1 − 𝜌, 𝜌) = 0, 0 ≤ 𝜌 ≤ 1  

As a result, (50) becomes 

∫ ∫
𝜕𝑉

𝜕𝜁

1−𝜁

0
𝑄𝑝+1𝑑𝜁𝑑𝜌

1

0
= 0, ∀𝑉 ∈ 𝑈𝑝        (51) 

Testing against 𝑉 = 𝜁𝑘+1, 0 ≤ 𝑘 ≤ 𝑝, (3.51) yields 

∫ ∫ 𝜁𝑘𝑄𝑝+1(𝜁, 𝜌)𝑑𝜁𝑑𝜌
1−𝜁

0

1

0

= 0, 0 ≤ 𝑘 ≤ 𝑝 

Consider the (𝑝 + 2) degree polynomial 

𝑞(𝜁) = ∫ 𝑄𝑝+1(𝜁, 𝜌)
1−𝜁

0
𝑑𝜌,  
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And its derivative 

𝑞′(𝜁) = −𝑄𝑝+1(𝜁, 1 − 𝜁) + ∫
𝜕𝑄𝑝+1(𝜁,𝜌)

𝜕𝜁
𝑑

1−𝜁

0
𝜌 =

∫
𝜕𝑄𝑝+1(𝜁,𝜌)

𝜕𝜁
𝑑

1−𝜁

0
𝜌         (52) 

Where, It is used 𝑄𝑝+1(1 − 𝜌, 𝜌) = 0. 

Noting that 𝑞(1) = 𝑞′(1) = 0, write 𝑞(𝜁) = (1 − 𝜁)2𝑟(𝜁), 

where 𝑟(𝜁) is a polynomial of degree 𝑝. Then 

0 = ∫ ∫ (1 − 𝜁)𝑘𝑄𝑝+1(𝜁, 𝜌)𝑑𝜁𝑑𝜌
1−𝜁

0

1

0
= ∫ (1 −

1

0

𝜁)𝑘 .∫ 𝑄𝑝+1(𝜁, 𝜌)𝑑𝜌
1−𝜁

0
/ 𝑑𝜁  

= ∫ (1 − 𝜁)𝑘𝑞(𝜁)𝑑𝜁
1

0
, 0 ≤ 𝑘 ≤ 𝑝  

Hence, 

∫ (1 − 𝜁)𝑘(1 − 𝜁)2𝑟(𝜁)𝑑𝜁
1

0
= 0, 0 ≤ 𝑘 ≤ 𝑝.      (53) 

Which infers that 𝑟(𝜁) is orthogonal to all polynomial in 

𝑃𝑝 with respect to the weight function(1 − 𝜁)2. Thus,𝑞(𝜁) =

0 which completes the proof. 

The proof for the case 𝛽 = ,0, 𝛽2-𝑡 is similar. 

The next theorem is state and prove the super convergence 

results for elements of type II and III using the space 𝑉𝑝. 

Theorem 5: Under the assumption of theorem 1 and using 

the polynomial space 𝑉𝑝  the leading term in the local DG 

error on an element of type II and III satisfies 

∬ (𝛽. ∇𝑄𝑝+1)𝜁𝑖𝜌𝑝+1−𝑖
∆

𝑑𝜁 𝑑𝜌 = 0, 𝑖 = 1, … … . 𝑝.     (54) 

Moreover, on an element of type III with 𝛽1 > 0, 𝛽2 = 0 

∬
𝜕𝑄𝑝+1(𝜁,𝜌)

𝜕𝜁
𝜁𝑖𝜌𝑝+1−𝑖𝑑𝜁𝑑𝜌

∆
= 0, 𝑖 = 1, … … . 𝑝.    (55) 

And 

𝑄𝑝+1(𝜁, 𝜌) = 𝐶1𝐿𝑝+1(𝜌) + 𝐶2(1 − 𝜌)𝑝+1𝑅𝑝+1 .
𝜁

1−𝜌
/  (56) 

Similarly, if 𝛽2 > 0, 𝛽1 = 0 

∬
𝜕𝑄𝑝+1(𝜁,𝜌)

𝜕𝜌
𝜁𝑖𝜌𝑝+1−𝑖𝑑𝜁𝑑𝜌

∆
= 0, 𝑖 = 1, … … . 𝑝.    (57) 

And 

𝑄𝑝+1(𝜁, 𝜌) = 𝐶1𝐿𝑝+1(𝜁) + 𝐶2(1 − 𝜁)𝑝+1𝑅𝑝+1 .
𝜌

1−𝜁
/   (58) 

Proof: Inserting the Maclaurin series for the local error (22) 

in this DGM orthogonally condition (35) with 𝑈−|𝛤−
= 𝑢 

and 𝑊𝑝 = 𝑉𝑝 the 𝑂(𝑕𝑝+1)term leads to 

∫ (𝛽. 𝑛)𝑄𝑝+1𝑉𝑑𝑠
𝛤+

+ ∬ (−𝛽. ∇𝑉𝑄𝑝+1)
∆

𝑑𝜁 𝑑𝜌 = 0, ∀𝑉 ∈ 𝑉𝑝  

On the canonical element the outflow edge is segment 

𝜌 = 1 − 𝜁, 0 ≤ 𝜁 ≤ 1, becomes 

∫ (𝛽. 𝑛)𝑄𝑝+1(𝜁, 1 − 𝜁)𝑉(𝜁, 1 − 𝜁)𝑑𝜁
1

0
+

∬ (−𝛽. ∇𝑉𝑄𝑝+1)
∆

𝑑𝜁 𝑑𝜌 = 0, ∀𝑉 ∈ 𝑉𝑝                (59) 

Testing against 𝑉 = 𝜁𝑖𝜌𝑝+1−𝑖 , 1 ≤ 𝑖 ≤ 𝑝 

∫ (𝛽1 + 𝛽2)𝑄𝑝+1(𝜁, 1 − 𝜁)𝜁𝑖𝜌𝑝+1−𝑖𝑑𝜁
1

0
−

∬ (𝛽. ∇(𝜁𝑖𝜌𝑝+1−𝑖)𝑄𝑝+1)
∆

𝑑𝜁 𝑑𝜌 = 0,1 ≤ 𝑖 ≤ 𝑝       (60) 

This can be written as 

∫ (𝛽1 + 𝛽2)𝑄𝑝+1(𝜁, 1 − 𝜁)𝜁𝑖𝜌𝑝+1−𝑖𝑑𝜁
1

0
−

∫ (𝛽1𝑖𝜁𝑖−1)𝑞(𝜁)𝑑𝜁
1

0
  

− ∫ (𝛽2(𝑝 + 1 − 𝑖)𝜌𝑝−𝑖)𝑔(𝜌)𝑑𝜌
1

0
= 0, 1 ≤ 𝑖 ≤ 𝑝(61) 

Where 

𝑞(𝜁) = ∫ 𝜌𝑝+1−𝑖𝑄𝑝+1(𝜁, 𝜌)
1−𝜁

0
𝑑𝜌, 𝑎𝑛𝑑𝑔(𝜌) =

∫ 𝜁𝑖𝑄𝑝+1(𝜁, 𝜌)
1−𝜌

0
𝑑𝜁  

Differentiating 𝑞(𝜁) and 𝑔(𝜌) yields 

𝑞′(𝜁) =

−(1 − 𝜁)𝑝+1−𝑖𝑄𝑝+1(𝜁, 1 − 𝜁) +

∫ 𝜌𝑝+1−𝑖 𝜕𝑄𝑝+1(𝜁,𝜌)

𝜕𝜁
𝑑

1−𝜁

0
𝜌, 0 ≤ 𝜁 ≤  1  

𝑔′(𝜌) =

−(1 − 𝜌)𝑖𝑄𝑝+1(1 − 𝜌, 𝜌) + ∫ 𝜁𝑖 𝜕𝑄𝑝+1(𝜁,𝜌)

𝜕𝜌
𝑑𝜁

1−𝜌

0
, 0 ≤ 𝜁 ≤

 1  

Integrating the second and third term in (61) by parts and 

using𝑞′(𝜁) and 𝑔′(𝜌) leads to 

∫ (𝛽1 + 𝛽2)𝑄𝑝+1(𝜁, 1 − 𝜁)𝜁𝑖(1 − 𝜁)𝑝+1−𝑖𝑑𝜁
1

0
−

𝛽1𝜁𝑖𝑞(𝜁)|
𝜁=0

𝜁=1
+ ∫ 𝛽1𝜁𝑖𝑞′(𝜁)𝑑𝜁

1

0
  

−𝛽2𝜌𝑝+1−𝑖𝑔(𝜌)|
𝜌=0

𝜌=1
+ ∫ 𝛽2𝜌𝑝+1−𝑖𝑔′(𝜌)𝑑𝜌

1

0
= 0, 1 ≤ 𝑖 ≤ 𝑝.  (61) 

Using 𝑞(1) = 𝑔(1) = 0 

∫ (𝛽1 + 𝛽2)𝑄𝑝+1(𝜁, 1 − 𝜁)𝜁𝑖(1 − 𝜁)𝑝+1−𝑖𝑑𝜁
1

0
−

∫ 𝛽1𝜁𝑖(1 − 𝜁)𝑝+1−𝑖𝑄𝑝+1(𝜁, 1 − 𝜁)𝑑𝜁
1

0
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+ ∫ 𝛽1𝜁𝑖 ∫ 𝜌𝑝+1−𝑖 𝜕𝑄𝑝+1(𝜁,𝜌)

𝜕𝜁
𝑑

1−𝜁

0
𝜌

1

0
𝜕𝜁 − ∫ 𝛽2𝜌𝑝+1−𝑖(1 −

1

0

𝜌)𝑖𝑄𝑝+1(1 − 𝜌, 𝜌)𝑑𝜌  

+ ∫ 𝛽2𝜌𝑝+1−𝑖 ∫ 𝜁𝑖 𝜕𝑄𝑝+1(𝜁,𝜌)

𝜕𝜌
𝑑𝜁𝜕𝜌

1−𝜌

0

1

0
= 0, 1 ≤ 𝑖 ≤ 𝑝.(62) 

Note that outflow boundary terms cancel out and (62) be-

comes 

𝛽1 ∫ ∫ 𝜁𝑖𝜌𝑝+1−𝑖 𝜕𝑄𝑝+1(𝜁,𝜌)

𝜕𝜁

1−𝜁

0

1

0
𝑑𝜁𝜕𝜌 +

𝛽2 ∫ ∫ 𝜁𝑖𝜌𝑝+1−𝑖 𝜕𝑄𝑝+1(𝜁,𝜌)

𝜕𝜌

1−𝜌

0

1

0
𝑑𝜁𝜕𝜌 = 0)     (63) 

Thus, it is established (54). 

Corollary 1: Under the statement of theorem 3 on a trian-

gle of type III with 𝛽1 > 0 𝑎𝑛𝑑 𝛽2 = 0 and 𝑈 is the DG solu-

tion, the following results hold. 

If 𝑈 ∈ 𝑃𝑝, the superconvergence rates are 𝑂(𝑕𝑝+2) of 𝑈 at 

the points 

(1 − 𝜌𝑖 , 𝜌𝑖), 𝑖 = 1, … … … , 𝑝 + 1.           (64) 

Where 𝜌1 < ⋯ < 𝜌𝑝+1 are the roots of 𝐿𝑝+1 in [0,1]. 

If 𝑈 ∈ 𝑉𝑝 we have 𝑂(𝑕𝑝+2) superconvergence rates of 𝑈 at 

the points 

((1 − 𝜌𝑖)𝜁𝑘 , 𝜌𝑖), 𝑖 = 1, … … … , 𝑝 + 1, 𝑘 = 1, … … … . , 𝑝 + 1 (65) 

Where 𝜁1 < ⋯ < 𝜁𝑝+1 = 1 are the roots of Radua poly-

nomial𝐿𝑝+1(𝜌) − 𝐿𝑝(𝜌) shifted to,0,1- and 𝜌1 < ⋯ < 𝜌𝑝+1 

are the roots of 𝐿𝑝+1 shifted to ,0,1-. 

Finally, if 𝑈 ∈ 𝑈𝑝, the superconvergence rates are having 

𝑂(𝑕𝑝+2)at every point on the outflow edge 

(𝜁, 1 − 𝜁), 0 ≤ 𝜁 ≤ 1.           (66) 

Proof: Note that (64) and (66) follows directly from theo-

rem 1 and 3, respectively. In order to prove (64) it is noted 

that 

𝑄𝑝+1 = 𝐶1𝐿𝑝+1(𝜌) + 𝐶2 ∏ (𝜁 − (1 − 𝜌)𝜁𝑘)𝑝+1
𝑘=1   

Thus, each line 𝜌 = 1 −
𝜁

𝜁𝑘
,𝑄𝑝+1 = 𝐶1𝐿𝑝+1(𝜌) 

For elements of type I consider the DG formulation (8) on 

the right angle ∆  with vertices (𝑕, 0), (𝑕, 𝑕)  and (0, 𝑕) 

mapped to the reference triangle defined by the vertices 

(1, 0), (1, 1) and (0, 1). The next theorem state and prove 

new super convergences results for elements of type I using 

the spaces 𝑈𝑝. 

Theorem 7: Let 𝑝 ≥ 1 and ∆ denote the reference triangle 

defined by the vertices (1,0), (1,1)  and (0,1) . Let 𝑢 ∈

𝐶∞(∆) and 𝑈 ∈ 𝑈𝑝(∆) be a solution of (1) and (8), respec-

tively with 𝑈−|𝛤−
= 𝑢. If 𝛽1 > 0 and  𝛽2 > 0, then the local 

error can be written as (22) where the leading term 𝑄𝑝+1 , 

satisfies the following orthogonality conditions 

∫ (𝛽. 𝑛)𝑄𝑝+1(𝛽2𝜁 − 𝛽1𝜌)𝑖𝑑𝑠
𝛤+

= 0, 𝑖 = 0, … … … , 𝑝,  (67) 

∬ 𝛽. ∇(𝜁 − 1)𝑖(𝜌 − 1)𝑗−1
∆

𝑄𝑝+1 𝑑𝜁 𝑑𝜌 = 0, 1 ≤ 𝑖 ≤ 𝑗 ≤

𝑝, 𝑖 + 𝑗 ≤ 𝑝          (68) 

∫ 𝛽2𝑄𝑝+1(𝜁, 1)(𝜁 − 1)𝑖𝑑𝜁
1

0
−

𝑖 ∬ 𝛽1(𝜁 − 1)𝑖−1
∆

𝑄𝑝+1 𝑑𝜁 𝑑𝜌 = 0, 𝑖 = 1, … … 𝑝 + 1 (69) 

∫ 𝛽1𝑄𝑝+1(1, 𝜌)(𝜌 − 1)𝑖𝑑𝜌
1

0
−

𝑖 ∬ 𝛽2(𝜌 − 1)𝑖−1
∆

𝑄𝑝+1 𝑑𝜁 𝑑𝜌 = 0, 𝑖 = 1, … … 𝑝 + 1     (70) 

Furthermore 

𝛽2𝑄𝑝+1(𝜁, 1) + 𝛽1𝑄𝑝+1(𝜁, 1 − 𝜁) + 𝛽1 ∫
𝜕𝑄𝑝+1(𝜁,𝜌)

𝜕𝜁
𝑑𝜌

1

1−𝜁
=

0, 0 ≤ 𝜁 ≤ 1,                     (71) 

𝛽1𝑄𝑝+1(1, 𝜌) + 𝛽1𝑄𝑝+1(1 − 𝜌, 𝜌) + 𝛽2 ∫
𝜕𝑄𝑝+1(𝜁,𝜌)

𝜕𝜌
𝑑𝜁

1

1−𝜌
=

0, 0 ≤ 𝜌 ≤ 1,                        (72) 

Finally, the point wisesuper convergence 

𝑄𝑝+1(0,1) = 𝑄𝑝+1(1,0) = 0  

Proof: The DG orthogonally (11) can be written as 

∫ (𝛽. 𝑛)𝜖−𝑉𝑑𝑠
𝛤−

+ ∫ (𝛽. 𝑛)𝜖𝑉𝑑𝑠
𝛤+

+ ∬ (−𝛽. ∇𝑉 +
∆

𝑕𝑏𝑉) 𝜖 𝑑𝜁 𝑑𝜌 = 0, ∀𝑉 ∈ 𝑈𝑝           (73) 

Let, use 𝑈−|𝛤−
= 𝑢 and substituting (22) in (73) and col-

lecting the terms with same powers in 𝑕, the 𝑂(𝑕𝑝+1) term 

yields 

∫ (𝛽. 𝑛)𝑄𝑝+1𝑉𝑑𝑠
𝛤+

+ ∬ (−𝛽. ∇𝑉)
∆

𝑄𝑝+1 𝑑𝜁 𝑑𝜌 = 0, ∀𝑉 ∈

𝑈𝑝,                               (74) 

Testing against (𝛽2𝜁 − 𝛽1𝜌)𝑖 = 0, 𝑖 = 0, … . . , 𝑝,  establish 

(67). 

Since the two outflow edges of ∆ are 𝜁 = 1 and 𝜌 = 1, (74) 

may be written as 

∫ 𝛽2𝑄𝑝+1(𝜁, 1)𝑉(𝜁, 1)𝑑𝜁
1

0
+ ∫ 𝛽1𝑄𝑝+1(1, 𝜌)𝑉(1, 𝜌)𝑑𝜌

1

0
−

∬ (𝛽. ∇𝑉)
∆

𝑄𝑝+1 𝑑𝜁 𝑑𝜌 = 0,  

∀𝑉 ∈ 𝑈𝑝                                       (75) 

Testing against 𝑉 = (𝜁 − 1)𝑖(𝜌 − 1)𝑗−1, 1 ≤ 𝑖 + 𝑗 ≤ 𝑝, 
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the boundary terms in (75) are zero which yields (68) 

Next, obtain (69) and (70) from (75) by testing against 

𝑉 = (𝜁 − 1)𝑖 , 1 ≤ 𝑖 ≤ 𝑝 + 1  and 𝑉 = (𝜌 − 1)𝑖 , 1 ≤ 𝑖 ≤ 𝑝 +

1 respectively. 

Finally, prove (71) by considering the polynomial 

𝑞(𝜁) = ∫ 𝑄𝑝+1(𝜁, 𝜌)𝑑𝜌
1

1−𝜁
,  

And 

𝑞′(𝜁) = 𝑄𝑝+1(𝜁, 1 − 𝜁) + ∫
𝜕𝑄𝑝+1(𝜁,𝜌)

𝜕𝜁
𝑑

1

1−𝜁
𝜌, 0 ≤ 𝜁 ≤  1. (76) 

Testing against 𝑉 = (𝜁 − 1)𝑖 , 0 ≤ 𝑖 ≤ 𝑝 + 1, in (75)  

∫ 𝛽2𝑄𝑝+1(𝜁, 1)𝑑𝜁
1

0
= 0  

And 

∫ 𝛽2𝑄𝑝+1(𝜁, 1)(𝜁 − 1)𝑖𝑑𝜁
1

0
−

∫ ∫ 𝛽1𝑖(𝜁 − 1)𝑖−1𝑄𝑝+1 𝑑𝜁 𝑑𝜌
1

1−𝜁

1

0
= 0, 0 ≤ 𝑖 ≤ 𝑝  (77) 

This can be written as 

∫ 𝛽2𝑄𝑝+1(𝜁, 1)(𝜁 − 1)𝑖𝑑𝜁
1

0
−

∫ 0𝛽1𝑖(𝜁 − 1)𝑖−1 ∫ 𝑄𝑝+1(𝜁, 𝜌) 𝑑𝜌
1

1−𝜁
1 𝑑𝜁

1

0
  

= ∫ 𝛽2𝑄𝑝+1(𝜁, 1)(𝜁 − 1)𝑖𝑑𝜁
1

0
− ∫ 𝛽1𝑖(𝜁 − 1)𝑖−1𝑞(𝜁)𝑑𝜁

1

0
=

0,           (78) 

Integration by parts  

∫ 𝛽2𝑄𝑝+1(𝜁, 1)(𝜁 − 1)𝑖𝑑𝜁
1

0
− 𝛽1(𝜁 − 1)𝑖|

𝜁=0

𝜁=1
+

∫ 𝛽1𝑖(𝜁 − 1)𝑖−1𝑞′(𝜁)𝑑𝜁
1

0
= 0. )      (79) 

Noting that the following holds 

−𝛽1(𝜁 − 1)0𝑞(𝜁)|𝜁=0
𝜁=1

+ ∫ 𝛽1(𝜁 − 1)0𝑞′(𝜁)𝑑𝜁
1

0
=

−𝛽1𝑞(𝜁)|𝜁=0
𝜁=1

+ 𝛽1𝑞(𝜁)|𝜁=0
𝜁=1

= 0  

Prove (79) for 𝑖 = 0. 

Thus 

∫ 𝛽2𝑄𝑝+1(𝜁, 1)(𝜁 − 1)𝑖𝑑𝜁
1

0
− 𝛽1(𝜁 − 1)𝑖|

𝜁=0

𝜁=1
+

∫ 𝛽1𝑖(𝜁 − 1)𝑖−1𝑞′(𝜁)𝑑𝜁
1

0
= 0, 0 ≤ 𝑖 ≤ 𝑝 + 1  

Combining 𝑞(0) = 0, (76) and (79), it is obtained 

∫ 𝛽2𝑄𝑝+1(𝜁, 1)(𝜁 − 1)𝑖𝑑𝜁
1

0
+ ∫ 𝛽1(𝜁 − 1)𝑖 .𝑄𝑝+1(𝜁, 1 −

1

0

𝜁) + ∫
𝜕𝑄𝑝+1(𝜁,𝜌)

𝜕𝜁
𝑑

1

1−𝜁
𝜌/ 𝑑𝜁 = 0,0 ≤ 𝑖 ≤ 𝑝 + 1    (80) 

Which can be written as the originality condition 

∫ 𝐻1(𝜁)(𝜁 − 1)𝑖𝑑𝜁
1

0
= 0, 𝑖 = 0, … … . . , 𝑝 + 1     (81) 

Where 

𝐻1(𝜁) =

𝛽2𝑄𝑝+1(𝜁, 1) + 𝛽1𝑄𝑝+1(𝜁, 1 − 𝜁) + 𝛽1 ∫
𝜕𝑄𝑝+1(𝜁,𝜌)

𝜕𝜁
𝑑

1

1−𝜁
𝜌  

Is a polynomial of degree 𝑝 + 1. 

Thus, 𝐻1(𝜁) = 0 which establishes (71) 

The proof of (72) follow the same line of reasoning by 

considering the polynomial 

𝑠(𝜌) = ∫ 𝑄𝑝+1(𝜁, 𝜌)𝑑𝜁
1

1−𝜌
,  

And 

𝑠′(𝜌) = 𝑄𝑝+1(1 − 𝜌, 𝜌) + ∫
𝜕𝑄𝑝+1(𝜁,𝜌)

𝜕𝜌
𝑑

1

1−𝜌
𝜁, 0 ≤ 𝜌 ≤  1  (82) 

Testing against 𝑉 = (𝜌 − 1)𝑖 , 0 ≤ 𝑖 ≤ 𝑝 + 1, in (82)  

∫ 𝛽2
1

0
𝑄𝑝+1(𝜁, 1)𝑉(𝜁, 1)𝑑𝜁 + ∫ 𝛽2

1

0
𝑄𝑝+1(1, 𝜌)𝑉(1, 𝜌)𝑑𝜌 −

∫ ∫ 𝛽∇𝑉𝑄𝑝+1 𝑑𝜁 𝑑𝜌
1

1−𝜌

1

0
= 0 ∀𝑣 ∈ 𝑈𝑝      (83) 

Yields 

∫ 𝛽1𝑄𝑝+1(1, 𝜌)𝑑𝜌
1

0
= 0  

And 

∫ 𝛽1𝑄𝑝+1(1, 𝜌)(𝜌 − 1)𝑖𝑑𝜌
1

0
−

∫ ∫ 𝛽2𝑖(𝜌 − 1)𝑖−1𝑄𝑝+1 𝑑𝜁 𝑑𝜌
1

1−𝜌

1

0
= 0, 0 ≤ 𝑖 ≤ 𝑝   (84) 

This can be written as 

∫ 𝛽1𝑄𝑝+1(1, 𝜌)(𝜌 − 1)𝑖𝑑𝜌
1

0
−

∫ 0𝛽2𝑖(𝜌 − 1)𝑖−1 ∫ 𝑄𝑝+1(𝜁, 𝜌) 𝑑𝜁
1

1−𝜌
1 𝑑𝜌

1

0
  

= ∫ 𝛽1𝑄𝑝+1(1, 𝜌)(𝜌 − 1)𝑖𝑑𝜌
1

0
− ∫ 𝛽2𝑖(𝜌 − 1)𝑖−1𝑠(𝜌)𝑑𝜌

1

0
=

0,       (85) 

By applying integration by parts  

∫ 𝛽2𝑄𝑝+1(1, 𝜌)(𝜌 − 1)𝑖𝑑𝜌
1

0
− 𝛽2(𝜌 − 1)𝑖𝑠(𝜌)|

𝜌=0

𝜌=1
+

∫ 𝛽2𝑖(𝜌 − 1)𝑖−1𝑠′(𝜌)𝑑𝜌
1

0
= 0.      (86) 

Noting that the following holds 

−𝛽2(𝜌 − 1)0𝑠(𝜌)|𝜌=0
𝜌=1

+ ∫ 𝛽2(𝜌 − 1)0𝑠′(𝜌)𝑑𝜌
1

0
=
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−𝛽2𝑠(𝜌)|𝜌=0
𝜌=1

+ 𝛽2𝑠(𝜌)|𝜌=0
𝜌=1

= 0  

Prove (86) for 𝑖 = 0. 

Thus 

∫ 𝛽1𝑄𝑝+1(1, 𝜌)(𝜌 − 1)𝑖𝑑𝜌
1

0
− 𝛽2(𝜌 − 1)𝑖𝑠(𝜌)|

𝜌=0

𝜌=1
+

∫ 𝛽2(𝜌 − 1)𝑖−1𝑠′(𝜌)𝑑𝜌
1

0
= 0,0 ≤ 𝑖 ≤ 𝑝 + 1    (87) 

Combining 𝑠(0) = 0, (82) and (87)  

∫ 𝛽1𝑄𝑝+1(1, 𝜌)(𝜌 − 1)𝑖𝑑𝜌
1

0
+ ∫ 𝛽2(𝜌 − 1)𝑖 .𝑄𝑝+1(1 −

1

0

𝜌, 𝜌) + ∫
𝜕𝑄𝑝+1(𝜁,𝜌)

𝜕𝜌
𝑑

1

1−𝜌
𝜁/ 𝑑𝜌 = 0,  

0 ≤ 𝑖 ≤ 𝑝 + 1  

It can written 

∫ 𝐻2(𝜌)(𝜌 − 1)𝑖𝑑𝜌
1

0
= 0, 𝑖 = 0, … … . . , 𝑝 + 1  

Where 

𝐻2(𝜁) =

𝛽1𝑄𝑝+1(1, 𝜌) + 𝛽2𝑄𝑝+1(1 − 𝜌, 𝜌) + 𝛽2 ∫
𝜕𝑄𝑝+1(𝜁,𝜌)

𝜕𝜌
𝑑

1

1−𝜌
𝜁  

Thus, 𝐻2(𝜁) = 0 which establishes (72) 

Conclude the proof of this theorem by establishing the 

point wise super convergence (73) as 

0 = 𝐻1(0) = 𝛽2𝑄𝑝+1(0,1) + 𝛽1𝑄𝑝+1(0,1) = (𝛽1 +

𝛽2)𝑄𝑝+1(0,1)  

Similarly, 𝐻2(0) = 0 leads to 

𝐻2(0) = 𝛽1𝑄𝑝+1(1,0) + 𝛽2𝑄𝑝+1(1,0) =

(𝛽1 + 𝛽2)𝑄𝑝+1(1,0)  

This completes the proof of the theorem. 

3. Conclusion 

This paper has investigated the error of the numerical so-

lution by applying the Discontinuous Galerkin finite element 

method for the second-order hyperbolic differential equation. 

It is a different and straightforward approach to seek error 

analysis from all other finite element scheme whichis given 

in the literature. It is investigated higher-dimension discon-

tinuous Galerkin methods for hyperbolic problems on trian-

gular meshes and also studied the effect of finite element 

spaces on the superconvergence properties of DG solutions 

on three types of triangular elements and it showed that the 

DG solution is 𝑂(𝑕𝑝+2)superconvergent at Legendre points 

on the outflow edge on triangles having one outflow edge 

using three polynomial spaces. 
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